Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions

نویسندگان

  • Sung-Kun Kim
  • Aaron Castro
  • Edward S. Kim
  • Austin P. Dinkel
  • Xiaoyun Liu
  • Miguel Castro
  • Giovanni Maga
چکیده

Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD) simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD) values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor) as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Expression of Thermus Aquaticus DNA Polymerase Gene, Using a Thermo-Inducible Expression Vector

DNA polymerase gene from Thermus aquaticus strain YT1 was amplified using VENTTM DNA po-lymerase and cloned under the control of X.PR promoter and expression was induced by a shift in tern perature. The culture was then sonicated, and after centrifugation the lysate was treated with poly‌ethyleneimine followed by a salting-out step. Finally the protein was precipitated with ammonium sulfate and...

متن کامل

3D structure of Thermus aquaticus single-stranded DNA–binding protein gives insight into the functioning of SSB proteins

In contrast to the majority of tetrameric SSB proteins, the recently discovered SSB proteins from the Thermus/Deinoccus group form dimers. We solved the crystal structures of the SSB protein from Thermus aquaticus (TaqSSB) and a deletion mutant of the protein and show the structure of their ssDNA binding domains to be similar to the structure of tetrameric SSBs. Two conformations accompanied by...

متن کامل

Transcript Cleavage by Thermus thermophilus RNA Polymerase

All known multisubunit RNA polymerases possess the ability to endonucleolytically degrade the nascent RNA transcript. To gain further insight into the conformational changes that govern transcript cleavage, we have examined the effects of certain anions on the intrinsic transcript cleavage activity of Thermus thermophilus RNA polymerase. Our results indicate that the conformational transitions ...

متن کامل

Structural studies on an inhibitory antibody against Thermus aquaticus DNA polymerase suggest mode of inhibition.

TP7, an antibody against Thermus aquaticus DNA polymerase I (TaqP), is used as a thermolabile switch in 'hot start' variations of PCR to minimize non-specific amplification events. Earlier studies have established that TP7 binds to the polymerase domain of TaqP, competes with primer template complex for binding and is a potent inhibitor of the polymerase activity of TaqP. We report crystallogra...

متن کامل

RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes

Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016